When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The parity sequence is the same as the sequence of operations. Using this form for f(n), it can be shown that the parity sequences for two numbers m and n will agree in the first k terms if and only if m and n are equivalent modulo 2 k. This implies that every number is uniquely identified by its parity sequence, and moreover that if there are ...

  3. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  4. Knight's tour - Wikipedia

    en.wikipedia.org/wiki/Knight's_tour

    A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square exactly once. If the knight ends on a square that is one knight's move from the beginning square (so that it could tour the board again immediately, following the same path), the tour is closed (or re-entrant); otherwise, it is open. [1][2]

  5. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The problem of computing longest common subsequences ...

  6. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...

  7. Longest increasing subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_increasing_subsequence

    one of the longest increasing subsequences is. 0, 2, 6, 9, 11, 15. This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, are other increasing subsequences of equal length in the same input sequence.

  8. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    Algorithm in which each approximation of the solution is derived from prior approximations. In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i -th approximation (called an "iterate") is derived ...

  9. Josephus problem - Wikipedia

    en.wikipedia.org/wiki/Josephus_problem

    Josephus problem. In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.