Search results
Results From The WOW.Com Content Network
In the ant colony optimization algorithms, an artificial ant is a simple computational agent that searches for good solutions to a given optimization problem. To apply an ant colony algorithm, the optimization problem needs to be converted into the problem of finding the shortest path on a weighted graph. In the first step of each iteration ...
The humanoid ant algorithm (HUMANT) [1] is an ant colony optimization algorithm. The algorithm is based on a priori approach to multi-objective optimization (MOO), which means that it integrates decision-makers preferences into optimization process. [2] Using decision-makers preferences, it actually turns multi-objective problem into single ...
Ant colony optimization is based on the ideas of ant foraging by pheromone communication to form paths. Primarily suited for combinatorial optimization and graph problems. Particle swarm optimization is based on the ideas of animal flocking behaviour. Also primarily suited for numerical optimization problems.
The network of trails functions as a shared external memory for the ant colony. [8] In computer science, this general method has been applied in a variety of techniques called ant colony optimization, which search for solutions to complex problems by depositing "virtual pheromones" along paths that appear promising. [9]
A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
Bacterial colony optimization; Barzilai-Borwein method; Basin-hopping; Benson's algorithm; Berndt–Hall–Hall–Hausman algorithm; Bin covering problem; Bin packing problem; Bland's rule; Branch and bound; Branch and cut; Branch and price; Bregman Lagrangian; Bregman method; Broyden–Fletcher–Goldfarb–Shanno algorithm
Ant colony optimization (ACO) uses many ants (or agents) equipped with a pheromone model to traverse the solution space and find locally productive areas. Although considered an Estimation of distribution algorithm , [ 64 ] Particle swarm optimization (PSO) is a computational method for multi-parameter optimization which also uses population ...
Ant colony optimization (ACO), introduced by Dorigo in his doctoral dissertation, is a class of optimization algorithms modeled on the actions of an ant colony. ACO is a probabilistic technique useful in problems that deal with finding better paths through graphs.