Search results
Results From The WOW.Com Content Network
The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for ...
The Shunt equation (also known as the Berggren equation) quantifies the extent to which venous blood bypasses oxygenation in the capillaries of the lung.. “Shunt” and “dead space“ are terms used to describe conditions where either blood flow or ventilation do not interact with each other in the lung, as they should for efficient gas exchange to take place.
Dissociation curve may refer to: Ligand (biochemistry)#Receptor/ligand binding affinity represented in a graph; Oxygen-haemoglobin dissociation curve, a graphical representation of oxygen release from haemoglobin; Melting curve analysis, a biochemical technique relying on heat-dependent dissociation between two DNA strands
Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.
In the oxygen-rich capillaries of the lung, this property causes the displacement of carbon dioxide to plasma as low-oxygen blood enters the alveolus and is vital for alveolar gas exchange. The general equation for the Haldane Effect is: H + + HbO 2 ⇌ H + Hb + O 2; However, this equation is confusing as it reflects primarily the Bohr effect.
The binding capacity of hemoglobin is influenced by the partial pressure of oxygen in the environment, as described by the oxygen–hemoglobin dissociation curve. A smaller amount of oxygen is transported in solution in the blood. [59] In systemic tissues, oxygen again diffuses down a concentration gradient into cells and their mitochondria ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.