Ads
related to: earth magnetic field compass diagram labeled with points worksheetgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Very weak electromagnetic fields disrupt the magnetic compass used by European robins and other songbirds, which use the Earth's magnetic field to navigate. Neither power lines nor cellphone signals are to blame for the electromagnetic field effect on the birds; [ 89 ] instead, the culprits have frequencies between 2 kHz and 5 MHz.
Earth's_magnetic_field,_schematic.png (566 × 503 pixels, file size: 96 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Magnetic dip causes the compass to dip upward or downward depending on the latitude. Illustration of magnetic dip from Norman's book, The Newe Attractive. Magnetic dip, dip angle, or magnetic inclination is the angle made with the horizontal by Earth's magnetic field lines. This angle varies at different points on Earth's surface.
The three plot lines show the total field strength (blue), radial (vertical) field component (magenta) and the horizontal (south to north) field component (yellow). Field strengths are given in microteslas and the geographic latitude is given in degrees. The field strength reaches up to around 60 microteslas at the poles.
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...
The Earth has a magnetic field which is approximately aligned with its axis of rotation. A magnetic compass is a device that uses this field to determine the cardinal directions. Magnetic compasses are widely used, but only moderately accurate. The north pole of the magnetic needle points toward the geographic north pole of the earth and vice ...
A magnetic compass points to magnetic north, not geographic (true) north. Compasses of the style commonly used for hiking (i.e., baseplate or protractor compass) utilize a dial or bezel which rotates 360 degrees and is independent of the magnetic needle. To manually establish a declination for true north, the bezel is rotated until the desired ...
If the Earth's magnetic fields were exactly dipolar, the north pole of a magnetic compass needle would point directly at the North Geomagnetic Pole. In practice, it does not because the geomagnetic field that originates in the core has a more complex non-dipolar part, and magnetic anomalies in the Earth's crust also contribute to the local ...