When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  3. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  4. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points.

  5. Paul de Casteljau - Wikipedia

    en.wikipedia.org/wiki/Paul_de_Casteljau

    Paul de Casteljau (19 November 1930 – 24 March 2022) was a French physicist and mathematician. In 1959, while working at Citroën, he developed an algorithm for evaluating calculations on a certain family of curves, which would later be formalized and popularized by engineer Pierre Bézier, leading to the curves widely known as Bézier curves.

  6. Pierre Bézier - Wikipedia

    en.wikipedia.org/wiki/Pierre_Bézier

    Pierre Étienne Bézier (1 September 1910 – 25 November 1999; [pjɛʁ etjɛn bezje]) was a French engineer and one of the founders of the fields of solid, geometric and physical modelling as well as in the field of representing curves, especially in computer-aided design and manufacturing systems. [1]

  7. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves.

  8. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    A commonly desired property of splines is for them to join their individual curves together with a specified level of parametric or geometric continuity.While individual curves in the spline are fully continuous within their own interval, there is always some amount of discontinuity where different curves meet.

  9. Bernstein polynomial - Wikipedia

    en.wikipedia.org/wiki/Bernstein_polynomial

    The probabilistic proof below simply provides a constructive method to create a polynomial which is approximately equal to on such a point lattice, given that "smoothing out" a function is not always trivial. Taking the expectation of a random variable with a simple distribution is a common way to smooth.