When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    The Bode plot for a linear, time-invariant system with transfer function (being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function | H ( s = j ω ) | {\displaystyle |H(s=j\omega )|} of frequency ω {\displaystyle \omega } (with j {\displaystyle j ...

  3. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    The function is defined by the three poles in the left half of the complex frequency plane. Log density plot of the transfer function () in complex frequency space for the third-order Butterworth filter with =1. The three poles lie on a circle of unit radius in the left half-plane.

  4. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    This is a little over 6 dB/octave and is the more usual description given for this roll-off. This can be shown to be so by considering the voltage transfer function, A, of the RC network: [1] = = + Frequency scaling this to ω c = 1/RC = 1 and forming the power ratio gives,

  5. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.

  6. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  7. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).

  8. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...

  9. Low-pass filter - Wikipedia

    en.wikipedia.org/wiki/Low-pass_filter

    If the transfer function of a first-order low-pass filter has a zero as well as a pole, the Bode plot flattens out again, at some maximum attenuation of high frequencies; such an effect is caused for example by a little bit of the input leaking around the one-pole filter; this one-pole–one-zero filter is still a first-order low-pass.