Search results
Results From The WOW.Com Content Network
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is ...
The largest possible ratio of the area of the inscribed square to the area of the triangle is 1/2, which occurs when =, = /, and the altitude of the triangle from the base of length is equal to . The smallest possible ratio of the side of one inscribed square to the side of another in the same non-obtuse triangle is 2 2 / 3 {\displaystyle 2 ...
The area of a triangle is its half of the product of the base times the height (length of the altitude). For a triangle with opposite sides ,,, if the three altitudes of the triangle are called ,,, the area is: = = =. Given a fixed base side and a fixed area for a triangle, the locus of apex points is a straight line parallel to the base.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
The area of an equilateral triangle with edge length is =. The formula may be derived from the formula of an isosceles triangle by Pythagoras theorem : the altitude h {\displaystyle h} of a triangle is the square root of the difference of squares of a side and half of a base . [ 3 ]
If two triangles have two sides of the one equal to two sides of the other, each to each, and the angles included by those sides equal, then the triangles are congruent (side-angle-side). The area of a triangle is half the area of any parallelogram on the same base and having the same altitude.
Any triangle subdivides its bounding box into the triangle itself and additional right triangles, and the areas of both the bounding box and the right triangles are easy to compute. Combining these area computations gives Pick's formula for triangles, and combining triangles gives Pick's formula for arbitrary polygons. [7] [8] [13]
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...