Ad
related to: focal length vs effective vision loss
Search results
Results From The WOW.Com Content Network
Effective focal length (EFL) The effective focal length is the inverse of the optical power of an optical system, and is the value used to calculate the magnification of the system. [1] The imaging properties of the optical system can be modeled by replacing the system with an ideal thin lens with the same EFL. [2]
The effective focal length is nearly equal to the stated focal length of the lens (F), except in macro photography where the lens-to-object distance is comparable to the focal length. In this case, the magnification factor ( m ) must be taken into account: f = F ⋅ ( 1 + m ) {\displaystyle f=F\cdot (1+m)}
A 100 mm focal length f /4 lens has an entrance pupil diameter of 25 mm. A 100 mm focal length f /2 lens has an entrance pupil diameter of 50 mm. Since the area is proportional to the square of the pupil diameter, [6] the amount of light admitted by the f /2 lens is four times that of the f /4 lens.
Fixed focus can be a less expensive alternative to autofocus, which requires electronics, moving parts, and power.Since fixed-focus lenses require no input from the operator, they are suitable for use in cameras designed to be inexpensive, or to operate without electrical power as in disposable cameras, or in low-end 35 mm film point and shoot cameras, or in cameras featuring simple operation.
If the medium surrounding an optical system has a refractive index of 1 (e.g., air or vacuum), then the distance from each principal plane to the corresponding focal point is just the focal length of the system. In the more general case, the distance to the foci is the focal length multiplied by the index of refraction of the medium.
The original application called for placing the chart at a distance 26 times the focal length of the imaging lens used. The bars above and to the left are in sequence, separated by approximately the square root of two (12, 17, 24, etc.), while the bars below and to the left have the same separation but a different starting point (14, 20, 28, etc.)
For example, binocular vision, which is the basis for stereopsis and is important for depth perception, covers 114 degrees (horizontally) of the visual field in humans; [7] the remaining peripheral ~50 degrees on each side [6] have no binocular vision (because only one eye can see those parts of the visual field). Some birds have a scant 10 to ...
[6] A wide-angle lens has a shorter focal length and includes more of the viewed scene than a normal lens; a telephoto lens has a longer focal length and captures a small portion of the scene, making it seem closer. Lenses are not labeled or sold according to their angle of view, but rather by their focal length, usually expressed in millimeters.