When.com Web Search

  1. Ad

    related to: wetted perimeter diagram calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The wetted perimeter can be defined mathematically as = = where l i is the length of each surface in contact with the aqueous body. In open channel flow, the wetted perimeter is defined as the surface of the channel bottom and sides in direct contact with the aqueous body.

  3. Flow in partially full conduits - Wikipedia

    en.wikipedia.org/wiki/Flow_in_partially_full...

    The variations of Q/Q (full) and V/V (full) with H/D ratio is shown in figure(b).From the equation 5, maximum value of Q/Q (full) is found to be equal to 1.08 at H/D =0.94 which implies that maximum rate of discharge through a conduit is observed for a conduit partly full.

  4. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth) [m]; is Manning's coefficient [time/length 1/3]; and; is a constant; k = 1 when using SI units and k = 1.49 when using BG units.

  5. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon by shear stress from the fluid. [3]

  6. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    P is the wetted perimeter (L). For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of ...

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    This is the cross-sectional area of the channel divided by the wetted perimeter. For a semi-circular channel, it is a quarter of the diameter (in case of full pipe flow). For a rectangular channel, the hydraulic radius is the cross-sectional area divided by the wetted perimeter.

  8. Wilhelmy plate - Wikipedia

    en.wikipedia.org/wiki/Wilhelmy_plate

    where is the wetted perimeter (+), is the plate width, is the plate thickness, and is the contact angle between the liquid phase and the plate. In practice the contact angle is rarely measured; instead, either literature values are used or complete wetting ( θ = 0 {\displaystyle \theta =0} ) is assumed.

  9. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    where x is the space coordinate along the channel axis, t denotes time, A(x,t) is the cross-sectional area of the flow at location x, u(x,t) is the flow velocity, ζ(x,t) is the free surface elevation and τ(x,t) is the wall shear stress along the wetted perimeter P(x,t) of the cross section at x.