Search results
Results From The WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution , so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations ...
There are thus no zero objects in Ord. The categorical product in Ord is given by the product order on the cartesian product. We have a forgetful functor Ord → Set that assigns to each preordered set the underlying set, and to each order-preserving function the underlying function. This functor is faithful, and therefore Ord is a concrete ...
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
Every normal function f has arbitrarily large fixed points; see the fixed-point lemma for normal functions for a proof. One can create a normal function f ′ : Ord → Ord, called the derivative of f, such that f ′(α) is the α-th fixed point of f. [2] For a hierarchy of normal functions, see Veblen functions.
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
The function f takes as inputs two prime numbers p and q in binary notation and returns their product. This function can be "easily" computed in O(b 2) time, where b is the total number of bits of the inputs. Inverting this function requires finding the factors of a given integer N.