Search results
Results From The WOW.Com Content Network
After analyzing the data, if the p-value is less than α, that is taken to mean that the observed data is sufficiently inconsistent with the null hypothesis for the null hypothesis to be rejected. However, that does not prove that the null hypothesis is false. The p-value does not, in itself, establish probabilities of hypotheses. Rather, it is ...
The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...
In many cases is strictly greater than α. For example, it is true for any successor ordinal : α + 1 ≤ ω α + 1 {\displaystyle \alpha +1\leq \omega _{\alpha +1}} holds. There are, however, some limit ordinals which are fixed points of the omega function, because of the fixed-point lemma for normal functions .
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
To reduce the probability of committing a type I error, making the alpha value more stringent is both simple and efficient. To decrease the probability of committing a type II error, which is closely associated with analyses' power, either increasing the test's sample size or relaxing the alpha level could increase the analyses' power.
The Bonferroni correction can also be applied as a p-value adjustment: Using that approach, instead of adjusting the alpha level, each p-value is multiplied by the number of tests (with adjusted p-values that exceed 1 then being reduced to 1), and the alpha level is left unchanged.
The p-value for the permutation test is the proportion of the r values generated in step (2) that are larger than the Pearson correlation coefficient that was calculated from the original data. Here "larger" can mean either that the value is larger in magnitude, or larger in signed value, depending on whether a two-sided or one-sided test is ...
In modern terms, he rejected the null hypothesis of equally likely male and female births at the p = 1/2 82 significance level. Laplace considered the statistics of almost half a million births. The statistics showed an excess of boys compared to girls. [5] He concluded by calculation of a p-value that the excess was a real, but unexplained ...