When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  3. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  4. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    inflection point In differential calculus, an inflection point, point of inflection, flex, or inflection (British English: inflexion) is a point on a continuous plane curve at which the curve changes from being concave (concave downward) to convex (concave upward), or vice versa. instantaneous rate of change

  5. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  6. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]

  8. Lists of physics equations - Wikipedia

    en.wikipedia.org/wiki/Lists_of_physics_equations

    In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.

  9. Opticks - Wikipedia

    en.wikipedia.org/wiki/Opticks

    Rather, the Opticks is a study of the nature of light and colour and the various phenomena of diffraction, which Newton called the "inflexion" of light. Newton sets forth in full his experiments, first reported to the Royal Society of London in 1672, [2] on dispersion, or the separation of light into a spectrum of its component colours.