When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate case thus has special features which makes it non-generic, or a special case. However, not all non-generic or special cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object ...

  3. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    Let line L be the polar line of point p with respect to the non-degenerate conic Q. By La Hire's theorem, every line passing through p has its pole on L. If L intersects Q in two points (the maximum possible) then the polars of those points are tangent lines that pass through p and such a point is called an exterior or outer point of Q.

  5. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...

  6. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    If the conic is a circle, then another degenerate case says that for a triangle, the three points that appear as the intersection of a side line with the corresponding side line of the Gergonne triangle, are collinear. Six is the minimum number of points on a conic about which special statements can be made, as five points determine a conic.

  7. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

  8. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line). The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse.

  9. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The reason each line is assumed to contain at least 3 points is to eliminate some degenerate cases. The spaces satisfying these three axioms either have at most one line, or are projective spaces of some dimension over a division ring , or are non-Desarguesian planes .

  1. Related searches degenerate case of a conic line in matlab number of sides of rectangle formula

    conic section matrix representationmatrix representation of conics
    conical section matrixwhat is a degenerate conic