Search results
Results From The WOW.Com Content Network
The sum of the entries along the main diagonal (the trace), plus one, equals 4 − 4(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...
A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to . In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.
Note that for 1-dimensional cubic convolution interpolation 4 sample points are required. For each inquiry two samples are located on its left and two samples on the right. These points are indexed from −1 to 2 in this text. The distance from the point indexed with 0 to the inquiry point is denoted by here.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom right corner of the matrix.
With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...
There exist other end conditions, "clamped spline", which specifies the slope at the ends of the spline, and the popular "not-a-knot spline", which requires that the third derivative is also continuous at the x 1 and x n−1 points. For the "not-a-knot" spline, the additional equations will read:
(by a formula Cayley had published the year before), except scaled so that w = 1 instead of the usual scaling so that w 2 + x 2 + y 2 + z 2 = 1. Thus vector (x,y,z) is the unit axis of rotation scaled by tan θ ⁄ 2. Again excluded are 180° rotations, which in this case are all Q which are symmetric (so that Q T = Q).