Search results
Results From The WOW.Com Content Network
If F is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude).
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
controls the amount of non-linearity in the restoring force; if =, the Duffing equation describes a damped and driven simple harmonic oscillator, γ {\displaystyle \gamma } is the amplitude of the periodic driving force; if γ = 0 {\displaystyle \gamma =0} the system is without a driving force, and
The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2] For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook [3]). The coherent state describes a state ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the simple harmonic oscillator and the regular periodic motion is known as simple harmonic motion.
Harmonic analysis – Study of superpositions in mathematics; Harmonics (electrical power) – Sinusoidal wave whose frequency is an integer multiple; Harmonic generation – Nonlinear optical process; Harmonic oscillator – Physical system that responds to a restoring force inversely proportional to displacement; Harmony – Aspect of music