Search results
Results From The WOW.Com Content Network
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
The function can be extended to sequences of actions by the following recursive equations: (, [ ]) = (, [,, …,]) = ( (,), [, …,]) A plan for a STRIPS instance is a sequence of actions such that the state that results from executing the actions in order from the initial state satisfies the goal conditions.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
For example, the iota function (ι) can replace for-loop iteration: ιN when applied to a scalar positive integer yields a one-dimensional array (vector), 1 2 3 ... N. N. Later APL implementations generally include comprehensive control structures, so that data structure and program control flow can be clearly and cleanly separated.
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.