Search results
Results From The WOW.Com Content Network
These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying ...
Photosynthetic oxygen evolution is the fundamental process by which oxygen is generated in the earth's biosphere. The reaction is part of the light-dependent reactions of photosynthesis in cyanobacteria and the chloroplasts of green algae and plants. It utilizes the energy of light to split a water molecule into its protons and electrons for ...
The enzyme RuBisCO is responsible for "fixing" CO 2 – that is, it attaches it to a carbon-based molecule to form a sugar, which can be used by the plant, releasing an oxygen molecule along the way. However, the enzyme is notoriously inefficient, and just as effectively will also fix oxygen instead of CO 2 in a process called photorespiration.
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
Photosynthetic water splitting (or oxygen evolution) is one of the most important reactions on the planet, since it is the source of nearly all the atmosphere's oxygen. Moreover, artificial photosynthetic water-splitting may contribute to the effective use of sunlight as an alternative energy-source.
The bacteria in the compost eats the dead plants and breaks down the oxygen that is released by the plants, turning it into carbon dioxide, which is needed for photosynthesis. The bottle is ...
Natural aeration is a type of both sub-surface and surface aeration. It can occur through sub-surface aquatic plants. Through the natural process of photosynthesis, water plants release oxygen into the water providing it with the oxygen necessary for fish to live and aerobic bacteria to break down excess nutrients. [3]
Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.