When.com Web Search

  1. Ad

    related to: python variable tracking techniques tutorial pdf full download

Search results

  1. Results From The WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    Two basic requirements are regulation (disturbance rejection – staying at a given setpoint) and command tracking (implementing setpoint changes). These terms refer to how well the controlled variable tracks the desired value. Specific criteria for command tracking include rise time and settling time. Some processes must not allow an overshoot ...

  3. Static single-assignment form - Wikipedia

    en.wikipedia.org/wiki/Static_single-assignment_form

    During SSA construction, Φ functions for any "block-local" variables are omitted. Computing the set of block-local variables is a simpler and faster procedure than full live-variable analysis, making semi-pruned SSA form more efficient to compute than pruned SSA form. On the other hand, semi-pruned SSA form will contain more Φ functions.

  4. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.

  5. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used ...

  6. Lookup table - Wikipedia

    en.wikipedia.org/wiki/Lookup_table

    Functions of a single variable (such as sine and cosine) may be implemented by a simple array. Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values ...

  7. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

  8. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Statistical analyses of multivariate data often involve exploratory studies of the way in which the variables change in relation to one another and this may be followed up by explicit statistical models involving the covariance matrix of the variables. Thus the estimation of covariance matrices directly from observational data plays two roles:

  9. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A binomial distributed random variable Y with parameters n and p is obtained as the sum of n independent and identically Bernoulli-distributed random variables X 1, X 2, ..., X n [4] Example: A coin is tossed three times. Find the probability of getting exactly two heads. This problem can be solved by looking at the sample space.