When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  3. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.

  4. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    This results in the axial tilt of accreted planets ranging from 0 to 180 degrees with any direction as likely as any other with both prograde and retrograde spins equally probable. Therefore, prograde spin with small axial tilt, common for the solar system's terrestrial planets except for Venus, is not common for terrestrial planets in general ...

  5. Apparent retrograde motion - Wikipedia

    en.wikipedia.org/wiki/Apparent_retrograde_motion

    The more distant planets retrograde more frequently, as they do not move as much in their orbits while Earth completes an orbit itself. The retrograde motion of a hypothetical extremely distant (and nearly non-moving) planet would take place during a half-year, with the planet's apparent yearly motion being reduced to a parallax ellipse.

  6. File:Planets and dwarf planets' tilt and rotation speed.webm

    en.wikipedia.org/wiki/File:Planets_and_dwarf...

    The reason why larger planets tend to spin faster is because they took on more of the Sun-orbiting mass, adding the mass's orbital motion to their spin in the process Date 22 January 2022

  7. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...

  8. Precession - Wikipedia

    en.wikipedia.org/wiki/Precession

    The torque-free precession rate of an object with an axis of symmetry, such as a disk, spinning about an axis not aligned with that axis of symmetry can be calculated as follows: [1] = ⁡ where ω p is the precession rate, ω s is the spin rate about the axis of symmetry, I s is the moment of inertia about the axis of symmetry, I p is moment ...

  9. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such. The boundaries are mathematical surfaces, or sets of points in spacetime, relevant to analysis of the black hole's properties and interactions.