Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.
Conditional independence depends on the nature of the third event. If you roll two dice, one may assume that the two dice behave independently of each other. Looking at the results of one die will not tell you about the result of the second die. (That is, the two dice are independent.)
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
[40] In 1978, Christopher Kasparek independently proposed an identical model of discovery and invention which he termed "recombinant conceptualization". [41] 1876: Oskar Hertwig and Hermann Fol independently described the entry of sperm into the egg and the subsequent fusion of the egg and sperm nuclei to form a single new nucleus.
In the Goidelic languages, dependent and independent verb forms are distinct verb forms; each tense of each verb exists in both forms. Verbs are often preceded by a particle which marks negation, or a question, or has some other force. The dependent verb forms are used after a particle, while independent forms are used when the verb is not ...
In the mathematical theory of free probability, the notion of free independence was introduced by Dan Voiculescu. [1] The definition of free independence is parallel to the classical definition of independence, except that the role of Cartesian products of measure spaces (corresponding to tensor products of their function algebras) is played by the notion of a free product of (non-commutative ...