Search results
Results From The WOW.Com Content Network
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
The foreach statement is derived from the for statement and makes use of a certain pattern described in C#'s language specification in order to obtain and use an enumerator of elements to iterate over. Each item in the given collection will be returned and reachable in the context of the code block.
C# (/ ˌ s iː ˈ ʃ ɑːr p / see SHARP) [b] is a general-purpose high-level programming language supporting multiple paradigms. C# encompasses static typing, [ 16 ] : 4 strong typing , lexically scoped , imperative , declarative , functional , generic , [ 16 ] : 22 object-oriented ( class -based), and component-oriented programming disciplines.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
C# is case sensitive and all C# keywords are in lower cases. Visual Basic and C# share most keywords, with the difference being that the default Visual Basic keywords are the capitalised versions of the C# keywords, e.g. Public vs public, If vs if. A few keywords have very different versions in Visual Basic and C#:
foreach is usually used in place of a standard for loop statement. Unlike other for loop constructs, however, foreach loops [1] usually maintain no explicit counter: they essentially say "do this to everything in this set", rather than "do this x times". This avoids potential off-by-one errors and makes code simpler to read.
The variant's value must decrease during each loop iteration but must never become negative during the correct execution of the loop. Loop variants are used to guarantee that loops will terminate. A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration.
I/O completion port loops run separately from the Message loop, and do not interact with the Message loop out of the box. The "heart" of most Win32 applications is the WinMain() function, which calls GetMessage() in a loop. GetMessage() blocks until a message, or "event", is received (with function PeekMessage() as a non-blocking alternative).