Search results
Results From The WOW.Com Content Network
Furthermore, theories have been put forward to take into account the effects of vibronic coupling on electron transfer, in particular, the PKS theory of electron transfer. [10] In proteins, ET rates are governed by the bond structures: the electrons, in effect, tunnel through the bonds comprising the chain structure of the proteins. [11]
This is a result of two facts. Firstly, many plasma sources heat the electrons more strongly than the ions. Secondly, atoms and ions are much heavier than electrons, and energy transfer in a two-body collision is much more efficient if the masses are similar. Therefore, equilibration of the temperature happens very slowly, and is not achieved ...
Carrier generation describes processes by which electrons gain energy and move from the valence band to the conduction band, producing two mobile carriers; while recombination describes processes by which a conduction band electron loses energy and re-occupies the energy state of an electron hole in the valence band.
The strongest bonds are formed by the sharing or transfer of electrons between atoms, allowing the formation of molecules. [17] Within a molecule, electrons move under the influence of several nuclei, and occupy molecular orbitals; much as they can occupy atomic orbitals in isolated atoms. [128]
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [ 1 ] but the definition has relaxed to include many related processes.
Electron capture is always an alternative decay mode for radioactive isotopes that do have sufficient energy to decay by positron emission. Electron capture is sometimes included as a type of beta decay , [ 1 ] because the basic nuclear process, mediated by the weak force, is the same.
Electron scattering occurs when electrons are displaced from their original trajectory.This is due to the electrostatic forces within matter interaction or, [2] [3] if an external magnetic field is present, the electron may be deflected by the Lorentz force.