When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100. Legendre and Chebyshev polynomials provide orthogonal families for the interval [−1, 1] while occasionally orthogonal families are required on [0, ∞). In this case it is convenient to apply the Cayley transform first, to bring the argument into [−1, 1].

  3. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .

  4. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  5. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    More accurately, the general orthogonality principle states the following: Given a closed subspace of estimators within a Hilbert space and an element in , an element ^ achieves minimum MSE among all elements in if and only if ⁡ {(^)} = for all .

  6. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle).

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory. The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind. A two-parameter generalization of (Eq.

  8. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    Furthermore, a change of variables t = cos θ transforms this equation into the Legendre equation, whose solution is a multiple of the associated Legendre polynomial P m ℓ (cos θ ) . Finally, the equation for R has solutions of the form R ( r ) = A r ℓ + B r − ℓ − 1 ; requiring the solution to be regular throughout R 3 forces B = 0 .

  9. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    It follows from this equation that the square of the determinant of Q equals 1, and thus the determinant of Q is either 1 or −1. The orthogonal matrices with determinant 1 form a subgroup called the special orthogonal group , denoted SO( n ) , consisting of all direct isometries of O( n ) , which are those that preserve the orientation of the ...