Search results
Results From The WOW.Com Content Network
The nitride anion, N 3-ion, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, [1] such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si 3 N 4), and semiconductors (e.g., gallium nitride, GaN).
Layered electrides or electrenes are single-layer materials consisting of alternating atomically thin two-dimensional layers of electrons and ionized atoms. [23] [24] The first example was Ca 2 N, in which the charge (+4) of two calcium ions is balanced by the charge of a nitride ion (-3) in the ion layer plus a charge (-1) in the electron ...
An iodide nitride is a mixed anion compound containing both iodide (I −) and nitride ions (N 3−). Another name is metalloiodonitrides . They are a subclass of halide nitrides or pnictide halides . [ 1 ]
The largest category of nitrides are the interstitial nitrides of formulae MN, M 2 N, and M 4 N (although variable composition is perfectly possible), where the small nitrogen atoms are positioned in the gaps in a metallic cubic or hexagonal close-packed lattice. They are opaque, very hard, and chemically inert, melting only at very high ...
Gallium nitride (Ga N) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure .
Lithium nitride is prepared by direct reaction of elemental lithium with nitrogen gas: [2] 6 Li + N 2 → 2 Li 3 N. Instead of burning lithium metal in an atmosphere of nitrogen, a solution of lithium in liquid sodium metal can be treated with N 2. Lithium nitride must be protected from moisture as it reacts violently with water to produce ammonia:
Aluminium nitride (Al N) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) [ 5 ] and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.
First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1]