Ads
related to: exponents kuta software worksheet linear equationssmartholidayshopping.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
To introduce Lyapunov exponent consider a fundamental matrix () (e.g., for linearization along a stationary solution in a continuous system), the fundamental matrix is (() |) consisting of the linearly-independent solutions of the first-order approximation of the system.
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
Exponentiation is when a number b, the base, is raised to a certain power y, the exponent, to give a value x; this is denoted =. For example, raising 2 to the power of 3 gives 8: = The logarithm of base b is the inverse operation, that provides the output y from the input x.
The proof is much the same as before; the recursion equation ensures that ′ (+) = ′ (+), and then the convexity condition implies that is linear on (−1, 0). Therefore, the linear approximation to natural tetration is the only solution of the equation f ( x ) = e f ( x − 1 ) ( x > − 1 ) {\displaystyle f(x)=e^{f(x-1)}\;\;(x>-1)} and f ...
The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.