When.com Web Search

  1. Ads

    related to: how to increase magnetic strength of wire in car battery box cover idea images

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side-by-side. [2] The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2 ...

  3. Electromagnetic clutches and brakes - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_clutches...

    If a piece of copper wire was wound, around the nail and then connected to a battery, it would create an electro magnet. The magnetic field that is generated in the wire, from the current, is known as the "right hand thumb rule". (V-1) The strength of the magnetic field can be changed by changing both wire size and the amount of wire (turns).

  4. Faraday cage - Wikipedia

    en.wikipedia.org/wiki/Faraday_cage

    Animation showing how a Faraday cage (box) works. When an external electrical field (arrows) is applied, the electrons (little balls) in the metal move to the left side of the cage, giving it a negative charge, while the remaining unbalanced charge of the nuclei give the right side a positive charge. These induced charges create an opposing ...

  5. Electromagnetic coil - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_coil

    The greater the number of turns of wire, the stronger the field produced. Conversely, a changing external magnetic flux induces a voltage in a conductor such as a wire, due to Faraday's law of induction. [3] [4] The induced voltage can be increased by winding the wire into a coil because the field lines intersect the circuit multiple times. [3]

  6. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    the magnetic field B changes (e.g. an alternating magnetic field, or moving a wire loop towards a bar magnet where the B field is stronger), the wire loop is deformed and the surface Σ changes, the orientation of the surface dA changes (e.g. spinning a wire loop into a fixed magnetic field), any combination of the above

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    In more visual terms, the magnetic flux through the wire loop is proportional to the number of magnetic field lines that pass through the loop. When the flux changes—because B changes, or because the wire loop is moved or deformed, or both—Faraday's law of induction says that the wire loop acquires an emf , defined as the energy available ...

  8. Electromagnetic clutch - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_clutch

    How it works – Magnetic particles (very similar to iron filings) are located in the powder cavity. When current flows through the coil, the magnetic flux that is created tries to bind the particles together, almost like a magnetic particle slush. As the current is increased, the magnetic field builds, strengthening the binding of the particles.

  9. Superconducting magnetic energy storage - Wikipedia

    en.wikipedia.org/wiki/Superconducting_magnetic...

    An increase in peak magnetic field yields a reduction in both volume (higher energy density) and cost (reduced conductor length). Smaller volume means higher energy density and cost is reduced due to the decrease of the conductor length. There is an optimum value of the peak magnetic field, about 7 T in this case.