Search results
Results From The WOW.Com Content Network
If one can put an equation in a factored form E⋅F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler, and may thus offer some insight on the problem. For example,
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
If the polynomial to be factored is + + + +, then all possible linear factors are of the form , where is an integer factor of and is an integer factor of . All possible combinations of integer factors can be tested for validity, and each valid one can be factored out using polynomial long division .
This factored form is unique up to the order of the factors and their multiplication by an invertible constant. In the case of the field of complex numbers, the irreducible factors are linear. Over the real numbers, they have the degree either one or two. Over the integers and the rational numbers the irreducible factors may have any degree. [21]
[6]: 202–207 If one is given a quadratic equation in the form x 2 + bx + c = 0, the sought factorization has the form (x + q)(x + s), and one has to find two numbers q and s that add up to b and whose product is c (this is sometimes called "Vieta's rule" [7] and is related to Vieta's formulas). As an example, x 2 + 5x + 6 factors as (x + 3)(x ...
Every morphism f of C can be factored as = for some morphisms and . The factorization is functorial : if u {\displaystyle u} and v {\displaystyle v} are two morphisms such that v m e = m ′ e ′ u {\displaystyle vme=m'e'u} for some morphisms e , e ′ ∈ E {\displaystyle e,e'\in E} and m , m ′ ∈ M {\displaystyle m,m'\in M} , then there ...
Consider a quartic equation expressed in the form + + + + =: There exists a general formula for finding the roots to quartic equations, provided the coefficient of the leading term is non-zero. However, since the general method is quite complex and susceptible to errors in execution, it is better to apply one of the special cases listed below ...
Observe that each summand has as a factor by the factorisation of expressions of the form that was discussed above. Thus, conclude that X − a {\displaystyle X-a} is a factor of f ( X ) {\displaystyle f(X)} .