When.com Web Search

  1. Ads

    related to: second order concentration time graph equation generator worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Bjerrum plot - Wikipedia

    en.wikipedia.org/wiki/Bjerrum_plot

    Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH 3 Br) is a bimolecular nucleophilic substitution (S N 2) reaction in a single bimolecular step. Its rate law is second-order: r = k[R−Br][OH −].

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation. For a typical second-order reaction with rate ...

  5. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    where [A] 0 is the amount, absorbance, or concentration of substrate initially present and [A] t is the amount, absorbance, or concentration of that reagent at time, t. Normalizing data to fractional conversion may be particularly helpful as it allows multiple reactions run with different absolute amounts or concentrations to be compared on the ...

  6. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  7. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    When studying urease at about the same time as Michaelis and Menten were studying invertase, Donald Van Slyke and G. E. Cullen [29] made essentially the opposite assumption, treating the first step not as an equilibrium but as an irreversible second-order reaction with rate constant +. As their approach is never used today it is sufficient to ...

  8. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The substrate concentration midway between these two limiting cases is denoted by K M. Thus, K M is the substrate concentration at which the reaction velocity is half of the maximum velocity. [2] The two important properties of enzyme kinetics are how easily the enzyme can be saturated with a substrate, and the maximum rate it can achieve.

  9. Reaction–diffusion system - Wikipedia

    en.wikipedia.org/wiki/Reaction–diffusion_system

    The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out over a surface in space. Reaction–diffusion systems are naturally applied in chemistry. However, the ...