When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  3. Exponent (linguistics) - Wikipedia

    en.wikipedia.org/wiki/Exponent_(linguistics)

    An exponent is a phonological manifestation of a morphosyntactic property. In non-technical language, it is the expression of one or more grammatical properties by sound. In non-technical language, it is the expression of one or more grammatical properties by sound.

  4. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The displays of pocket calculators of the 1970s did not display an explicit symbol between significand and exponent; instead, one or more digits were left blank (e.g. 6.022 23, as seen in the HP-25), or a pair of smaller and slightly raised digits were reserved for the exponent (e.g. 6.022 23, as seen in the Commodore PR100).

  5. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    To the right is the long tail, and to the left are the few that dominate (also known as the 80–20 rule). In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one ...

  6. Zenzizenzizenzic - Wikipedia

    en.wikipedia.org/wiki/Zenzizenzizenzic

    Recorde proposed three mathematical terms by which any power (that is, index or exponent) greater than 1 could be expressed: zenzic, i.e. squared; cubic; and sursolid, i.e. raised to a prime number greater than three, the smallest of which is five. Sursolids were as follows: 5 was the first; 7, the second; 11, the third; 13, the fourth; etc.

  7. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo . As for definition (5), the additive property together with the complex derivative f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} are sufficient to guarantee f ( x ) = e x ...

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  9. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    Solving for , = = = = = Thus, the power rule applies for rational exponents of the form /, where is a nonzero natural number. This can be generalized to rational exponents of the form p / q {\displaystyle p/q} by applying the power rule for integer exponents using the chain rule, as shown in the next step.