Search results
Results From The WOW.Com Content Network
The effect of latitude can be clearly seen with gravity in high-latitude cities: Anchorage (9.826 m/s 2), Helsinki (9.825 m/s 2), being about 0.5% greater than that in cities near the equator: Kuala Lumpur (9.776 m/s 2). The effect of altitude can be seen in Mexico City (9.776 m/s 2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9 ...
To exert an influence, something, such as a wave or particle, must travel through the space between the two points, carrying the influence. The special theory of relativity limits the maximum speed at which causal influence can travel to the speed of light, . Therefore, the principle of locality implies that an event at one point cannot cause a ...
This is the "textbook" case of the vertical motion of an object falling a small distance close to the surface of a planet. It is a good approximation in air as long as the force of gravity on the object is much greater than the force of air resistance, or equivalently the object's velocity is always much less than the terminal velocity (see below).
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n , g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2 )), [ 5 ] g 0 , or simply g (which is also used for the variable local value).
The effect of a finite speed of gravity goes to zero as c goes to infinity, but not as 1/c 2 as it does in modern theories. This led Laplace to conclude that the speed of gravitational interactions is at least 7 × 10 6 times the speed of light.
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity.
The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity.When moving eastbound, the object's angular velocity is increased (in addition to Earth's rotation), and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.