Search results
Results From The WOW.Com Content Network
A spectral line is a weaker or stronger region in an otherwise uniform and ... and the patterns for all atoms are well-predicted by the Rydberg-Ritz formula. These ...
Rydberg's formula as it appears in a November 1888 record. In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements.The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen.
Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [1] Actual line ...
The red H-alpha spectral line of the Balmer series of atomic hydrogen, which is the transition from the shell n = 3 to the shell n = 2, is one of the conspicuous colours of the universe. It contributes a bright red line to the spectra of emission or ionisation nebula, like the Orion Nebula , which are often H II regions found in star forming ...
The four visible hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict
The Rydberg–Ritz combination principle is an empirical rule proposed by Walther Ritz in 1908 to describe the relationship of the spectral lines for all atoms, as a generalization of an earlier rule by Johannes Rydberg for the hydrogen atom and the alkali metals.
The equivalent width of a spectral line is a measure of the area of the line on a plot of intensity versus wavelength in relation to underlying continuum level. It is found by forming a rectangle with a height equal to that of continuum emission, and finding the width such that the area of the rectangle is equal to the area in the spectral line.
The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy. This leads to the conclusion that bound electrons cannot have just any amount of energy but only a certain amount of energy. The emission spectrum can be used to determine the composition of a material, since it is ...