When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 22 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method can be used to convert between different positional numeral systems – in which case x is the base of the number system, and the a i coefficients are the digits of the base-x representation of a given number – and can also be used if x is a matrix, in which case the gain in computational efficiency is even greater.

  4. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...

  5. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  6. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]

  7. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    If the numbers , …, are pairwise different, then the polynomials in the terms of the right hand side form a basis of the n-dimensional space [] of polynomials with maximal degree n − 1. Thus a solution w → {\displaystyle {\vec {w}}} to the increment equation exists in this case.

  8. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.

  9. Sextic equation - Wikipedia

    en.wikipedia.org/wiki/Sextic_equation

    The number of complex roots equals 6 minus the number of real roots. In algebra, a sextic (or hexic) polynomial is a polynomial of degree six. A sextic equation is a polynomial equation of degree six—that is, an equation whose left hand side is a sextic polynomial and whose right hand side is zero. More precisely, it has the form: