Search results
Results From The WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.
In mathematics, a conchospiral a specific type of space spiral on the surface of a cone (a conical spiral), whose floor projection is a logarithmic spiral. Conchospirals are used in biology for modelling snail shells, and flight paths of insects [1] [2] and in electrical engineering for the construction of antennas. [3] [4]
In all of the following nose cone shape equations, L is the overall length of the nose cone and R is the radius of the base of the nose cone. y is the radius at any point x, as x varies from 0, at the tip of the nose cone, to L. The equations define the two-dimensional profile of the nose shape.
Two well-known spiral space curves are conical spirals and spherical spirals, defined below. Another instance of space spirals is the toroidal spiral. [8] A spiral wound around a helix, [9] also known as double-twisted helix, [10] represents objects such as coiled coil filaments.
In the Rhumb line, as the latitude tends to the poles, φ → ± π / 2 , sin φ → ±1, the isometric latitude arsinh(tan φ) → ± ∞, and longitude λ increases without bound, circling the sphere ever so fast in a spiral towards the pole, while tending to a finite total arc length Δ s given by
In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve. [2] Sometimes the term "conical surface" is used to mean just one nappe. [3]