When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generating function (physics) - Wikipedia

    en.wikipedia.org/wiki/Generating_function_(physics)

    The generating function F for this transformation is of the third kind, = (,). To find F explicitly, use the equation for its derivative from the table above, =, and substitute the expression for P from equation , expressed in terms of p and Q:

  3. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action angles result from a type-2 canonical transformation where the generating function is Hamilton's characteristic function (not Hamilton's principal function ).Since the original Hamiltonian does not depend on time explicitly, the new Hamiltonian (,) is merely the old Hamiltonian (,) expressed in terms of the new canonical coordinates, which we denote as (the action angles, which are the ...

  4. Canonical transformation - Wikipedia

    en.wikipedia.org/wiki/Canonical_transformation

    Restricted canonical transformations are coordinate transformations where transformed coordinates Q and P do not have explicit time dependence, i.e., = (,) and = (,).The functional form of Hamilton's equations is ˙ =, ˙ = In general, a transformation (q, p) → (Q, P) does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some ...

  5. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian.

  6. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :

  7. Symplectomorphism - Wikipedia

    en.wikipedia.org/wiki/Symplectomorphism

    Examples of symplectomorphisms include the canonical transformations of classical mechanics and theoretical physics, the flow associated to any Hamiltonian function, the map on cotangent bundles induced by any diffeomorphism of manifolds, and the coadjoint action of an element of a Lie group on a coadjoint orbit.

  8. Canonical coordinates - Wikipedia

    en.wikipedia.org/wiki/Canonical_coordinates

    Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.

  9. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    To derive the HJE, a generating function (,,) is chosen in such a way that, it will make the new Hamiltonian =. Hence, all its derivatives are also zero, and the transformed Hamilton's equations become trivial P ˙ = Q ˙ = 0 {\displaystyle {\dot {\mathbf {P} }}={\dot {\mathbf {Q} }}=0} so the new generalized coordinates and momenta are ...