Search results
Results From The WOW.Com Content Network
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
Catalysts are substances that make weak bonds with reactants or intermediates and change the pathway (mechanism) of a reaction which in turn increases the speed of a reaction by lowering the activation energy needed for the reaction to take place. A catalyst is not destroyed or changed during a reaction, so it can be used again.
Catalysts: these may be for example metal ions or coenzymes and they catalyze a reaction by increasing the rate of the reaction and lowering the activation energy. In the simplest sense, the reactions that occur in biosynthesis have the following format: [2]
These catalysts initiate radical chain reactions, autoxidation that produce organic radicals that combine with oxygen to give hydroperoxide intermediates. Generally the selectivity of oxidation is determined by bond energies. For example, benzylic C-H bonds are replaced by oxygen faster than aromatic C-H bonds. [2]
Oxidoreductases, enzymes that catalyze oxidation-reduction reactions, constitute Class EC 1 of the IUBMB classification of enzyme-catalyzed reactions. [2] Any of these may be called dehydrogenases, especially those in which NAD + is the electron acceptor (oxidant), but reductase is also used when the physiological emphasis on reduction of the substrate, and oxidase is used only when O 2 is the ...
An example of crucial esterase is acetylcholine esterase, which assists in transforming the neuron impulse into the acetate group after the hydrolase breaks the acetylcholine into choline and acetic acid. [1] Acetic acid is an important metabolite in the body and a critical intermediate for other reactions such as glycolysis.
The graph for these equations is a sigmoid curve (specifically a logistic function), which is typical for autocatalytic reactions: these chemical reactions proceed slowly at the start (the induction period) because there is little catalyst present, the rate of reaction increases progressively as the reaction proceeds as the amount of catalyst ...
Similar reactions will occur far faster if the reaction is intramolecular. The effective concentration of acetate in the intramolecular reaction can be estimated as k 2 /k 1 = 2 x 10 5 Molar. However, the situation might be more complex, since modern computational studies have established that traditional examples of proximity effects cannot be ...