When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Visvalingam–Whyatt algorithm - Wikipedia

    en.wikipedia.org/wiki/Visvalingam–Whyatt_algorithm

    The algorithm is easy to understand and explain, but is often competitive with much more complex approaches. With the use of a priority queue, the algorithm is performant on large inputs, since the importance of each point can be computed using only its neighbors, and removing a point only requires recomputing the importance of two other points.

  3. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers , using addition and multiplication .

  4. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). ...

  5. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The computation of (1 + ⁠ iπ / N ⁠) N is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 + ⁠ iπ / N ⁠) N. It can be seen that as N gets larger (1 + ⁠ iπ / N ⁠) N approaches a limit of −1. Euler's identity asserts that is

  6. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  7. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  8. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    The Bateman equation is a classical master equation where the transition rates are only allowed from one species (i) to the next (i+1) but never in the reverse sense (i+1 to i is forbidden). Bateman found a general explicit formula for the amounts by taking the Laplace transform of the variables.

  9. Akima spline - Wikipedia

    en.wikipedia.org/wiki/Akima_spline

    In applied mathematics, an Akima spline is a type of non-smoothing spline that gives good fits to curves where the second derivative is rapidly varying. [1] The Akima spline was published by Hiroshi Akima in 1970 from Akima's pursuit of a cubic spline curve that would appear more natural and smooth, akin to an intuitively hand-drawn curve.