When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unitary divisor - Wikipedia

    en.wikipedia.org/wiki/Unitary_divisor

    Number 1 is a unitary divisor of every natural number. The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the ...

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital. gcd( m , n ) ( greatest common divisor of m and n ) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n ).

  5. Multiply perfect number - Wikipedia

    en.wikipedia.org/wiki/Multiply_perfect_number

    A divisor d of a positive integer n is called a bi-unitary divisor of n if the greatest common unitary divisor (gcud) of d and n/d equals 1. This concept is due to D. Surynarayana (1972). The sum of the (positive) bi-unitary divisors of n is denoted by σ ** (n). Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers ...

  6. Unitary perfect number - Wikipedia

    en.wikipedia.org/wiki/Unitary_perfect_number

    A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors). The number 6 is the only number that is both a perfect number and a unitary perfect number.

  7. Superperfect number - Wikipedia

    en.wikipedia.org/wiki/Superperfect_number

    If n is an even superperfect number, then n must be a power of 2, 2 k, such that 2 k+11 is a Mersenne prime. [1] [2] It is not known whether there are any odd superperfect numbers. An odd superperfect number n would have to be a square number such that either n or σ(n) is divisible by at least three distinct primes. [2]

  8. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6. A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N.

  9. Semiperfect number - Wikipedia

    en.wikipedia.org/wiki/Semiperfect_number

    A semiperfect number that is not divisible by any smaller semiperfect number is called primitive. Every number of the form 2 m p for a natural number m and an odd prime number p such that p < 2 m+1 is also semiperfect. In particular, every number of the form 2 m (2 m+11) is semiperfect, and indeed perfect if 2 m+11 is a Mersenne prime.