When.com Web Search

  1. Ad

    related to: calculating probability of two events without replacement examples free

Search results

  1. Results From The WOW.Com Content Network
  2. Hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_distribution

    In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.

  3. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    The probabilities of the individual events (red, and club) are multiplied rather than added. The probability of drawing a red and a club in two drawings without replacement is then 26/52 × 13/51 × 2 = 676/2652, or 13/51. With replacement, the probability would be 26/52 × 13/52 × 2 = 676/2704, or 13/52.

  4. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...

  5. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  6. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  7. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.

  8. Multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Multinomial_distribution

    The +2 in the name wald+2 can now be taken to mean that in the context of a two-by-two contingency table, which is a multinomial distribution with four possible events, then since we add 1/2 an observation to each of them, then this translates to an overall addition of 2 observations (due to the prior).

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    This follows from the definition of independence in probability: the probabilities of two independent events happening, given a model, is the product of the probabilities. This is particularly important when the events are from independent and identically distributed random variables , such as independent observations or sampling with replacement .

  1. Related searches calculating probability of two events without replacement examples free

    probability of two eventsprobability theory mutually exclusive
    probability and independence