When.com Web Search

  1. Ads

    related to: gamma analysis imrt function in spss software free trial

Search results

  1. Results From The WOW.Com Content Network
  2. SPSS Modeler - Wikipedia

    en.wikipedia.org/wiki/SPSS_Modeler

    In early 2000, the software was developed into a client–server model architecture, and shortly afterward, the client front-end interface component was rewritten fully and replaced with a new Java front-end, which allowed deeper integration with the other tools provided by SPSS. SPSS Clementine version 7.0: The client front-end runs under Windows.

  3. Goodman and Kruskal's gamma - Wikipedia

    en.wikipedia.org/wiki/Goodman_and_Kruskal's_gamma

    In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level .

  4. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  5. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    Interpolated approximations and bounds are all of the form ~ () + (~ ()) where ~ is an interpolating function running monotonially from 0 at low α to 1 at high α, approximating an ideal, or exact, interpolator (): = () () For the simplest interpolating function considered, a first-order rational function ~ = + the tightest lower bound has ...

  6. Reciprocal gamma function - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_gamma_function

    The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function. Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.

  7. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...