Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit Aryabhatia, [1] Section I) trigonometric tables. The versine of an angle is 1 minus its cosine . There are several related functions, most notably the coversine and haversine .
In keeping with the general notation, some English authors use expressions like sin −1 (x) to denote the inverse of the sine function applied to x (actually a partial inverse; see below). [8] [6] Other authors feel that this may be confused with the notation for the multiplicative inverse of sin (x), which can be denoted as (sin (x)) −1. [6]
This image shows sin x and its Taylor approximations by polynomials of degree 1, 3, 5, 7, 9, ... except that divided differences appear in place of differentiation: ...
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In geometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
The sine function and all of its Taylor polynomials are odd functions. The cosine function and all of its Taylor polynomials are even functions. In mathematics , an even function is a real function such that f ( − x ) = f ( x ) {\displaystyle f(-x)=f(x)} for every x {\displaystyle x} in its domain .
In fact, Osborn's rule [18] states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for , , or and into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term ...