When.com Web Search

  1. Ad

    related to: runge kutta derivation of word problems worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    All RungeKutta methods mentioned up to now are explicit methods. Explicit RungeKutta methods are generally unsuitable for the solution of stiff equations because their region of absolute stability is small; in particular, it is bounded. [25] This issue is especially important in the solution of partial differential equations.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    Diagonally Implicit RungeKutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems; [6] the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    Fehlberg, Erwin (1969) Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. Vol. 315. National aeronautics and space administration. Fehlberg, Erwin (1969). "Klassische Runge-Kutta-Nystrom-Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle". Computing. 4: 93– 106.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any RungeKutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  6. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical methods for ordinary differential equations, such as RungeKutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order RungeKutta method applied to the differential equation yields Simpson's rule from above.

  7. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Methods such as RungeKutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it.

  8. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit RungeKutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  9. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...