Ad
related to: ohm's law graphing calculator
Search results
Results From The WOW.Com Content Network
The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I–V curve) is nonlinear (or non-ohmic).
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not. For many materials, the current I through the material is proportional to the voltage V applied across it: over a wide range of voltages and currents. Therefore, the resistance and conductance ...
The simplest I–V curve is that of a resistor, which according to Ohm's law exhibits a linear relationship between the applied voltage and the resulting electric current; the current is proportional to the voltage, so the I–V curve is a straight line through the origin with positive slope. The reciprocal of the slope is equal to the resistance.
Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance ρ in 10 −10 Ω m, red line and specific thermal conductivity λ in W/(K m), green line. Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant.
The units of specific contact resistivity are typically therefore in ohm-square metre, or Ω⋅m 2. When the current is a linear function of the voltage, the device is said to have ohmic contacts. Inductive and capacitive methods could be used in principle to measure an intrinsic impedance without the complication of contact resistance.
Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).