When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is a fundamental interaction that confines quarks into protons, neutrons, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

  3. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    In this symbolic representing of a nuclear reaction, lithium-6 (6 3 Li) and deuterium (2 1 H) react to form the highly excited intermediate nucleus 8 4 Be which then decays immediately into two alpha particles of helium-4 (4 2 He). Protons are symbolically represented by red spheres, and neutrons by blue spheres.

  4. Proton capture - Wikipedia

    en.wikipedia.org/wiki/Proton_capture

    Proton capture is a nuclear reaction in which an atomic nucleus and one or more protons collide and merge to form a heavier nucleus. Since protons have positive electric charge, they are repelled electrostatically by the positively charged nucleus. Therefore, it is more difficult for protons to enter the nucleus compared to neutrally charged ...

  5. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    Free protons of high energy and velocity make up 90% of cosmic rays, which propagate through the interstellar medium. [33] Free protons are emitted directly from atomic nuclei in some rare types of radioactive decay. [34] Protons also result (along with electrons and antineutrinos) from the radioactive decay of free neutrons, which are unstable ...

  6. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.

  7. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

  8. Conversion reactor - Wikipedia

    en.wikipedia.org/wiki/Conversion_reactor

    Proton and antiproton production: Conventional matter consists of protons and electrons, with electrons having insignificant mass compared to protons. One conventional model for producing protons from energy is extremely high-energy cosmic ray protons colliding with nuclei in the interstellar medium, via the reaction: p + A → p + p + p + A.

  9. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    In most nuclear reactions, a chain reaction designates a reaction that produces a product, such as neutrons given off during fission, that quickly induces another such reaction. The proton–proton chain is, like a decay chain, a series of reactions. The product of one reaction is the starting material of the next reaction.