Search results
Results From The WOW.Com Content Network
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
When used with a spectroscopic reflectometry tool, the Forouhi–Bloomer dispersion equations specify n and k for amorphous and crystalline materials as a function of photon energy E. Values of n and k as a function of photon energy, E , are referred to as the spectra of n and k , which can also be expressed as functions of the wavelength of ...
Energy band gaps can be classified using the wavevectors of the states surrounding the band gap: Direct band gap: the lowest-energy state above the band gap has the same k as the highest-energy state beneath the band gap. Indirect band gap: the closest states above and beneath the band gap do not have the same k value.
The Brus equation or confinement energy equation can be used to describe the emission energy of quantum dot semiconductor nanocrystals in terms of the band gap energy E gap, the Planck constant h, the radius of the quantum dot r, as well as the effective mass of the excited electron m e * and of the excited hole m h *.
The emitted wavelength, dependent on the material's band gap, can be controlled by the GaN/InN ratio, from near ultraviolet for 0.02In/0.98Ga through 390 nm for 0.1In/0.9Ga, violet-blue 420 nm for 0.2In/0.8Ga, to blue 440 nm for 0.3In/0.7Ga, to red for higher ratios and also by the thickness of the InGaN layers which are typically in the range ...
Typically, a Tauc plot shows the quantity hν (the photon energy) on the abscissa (x-coordinate) and the quantity (αhν) 1/2 on the ordinate (y-coordinate), where α is the absorption coefficient of the material. Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material.