When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Four-tensor - Wikipedia

    en.wikipedia.org/wiki/Four-tensor

    In special relativity, one of the simplest non-trivial examples of a four-tensor is the four-displacement = (,,,) = (,,,) a four-tensor with contravariant rank 1 and covariant rank 0. Four-tensors of this kind are usually known as four-vectors.

  3. Voigt notation - Wikipedia

    en.wikipedia.org/wiki/Voigt_notation

    Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...

  4. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  5. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  6. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  7. Tensor rank decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_rank_decomposition

    On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3 tensor with probability zero. It is even known that the generic rank-3 real tensor in R 2 ⊗ R 2 ⊗ R 2 {\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb ...

  8. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The rank of a tensor is the minimum number of rank-one tensor that must be summed to obtain the tensor. A rank-one tensor may be defined as expressible as the outer product of the number of nonzero vectors needed to obtain the correct order. Dyadic tensor A dyadic tensor is a tensor of order two, and may be represented as a square matrix. In ...

  9. Trifocal tensor - Wikipedia

    en.wikipedia.org/wiki/Trifocal_tensor

    In computer vision, the trifocal tensor (also tritensor) is a 3×3×3 array of numbers (i.e., a tensor) that incorporates all projective geometric relationships among three views. It relates the coordinates of corresponding points or lines in three views, being independent of the scene structure and depending only on the relative motion (i.e ...