Search results
Results From The WOW.Com Content Network
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
In equations, the typical symbol for degrees of freedom is ν (lowercase Greek letter nu).In text and tables, the abbreviation "d.f." is commonly used. R. A. Fisher used n to symbolize degrees of freedom but modern usage typically reserves n for sample size.
the number of degrees of freedom for each mean ( df = N − k) where N is the total number of observations.) The distribution of q has been tabulated and appears in many textbooks on statistics. In some tables the distribution of q has been tabulated without the factor.
The degree of freedom of a system can be viewed as the minimum number of coordinates required to specify a configuration. Applying this definition, we have: For a single particle in a plane two coordinates define its location so it has two degrees of freedom; A single particle in space requires three coordinates so it has three degrees of freedom;
where Y i• is the mean of the i th row of the data table, Y •j is the mean of the j th column of the data table, and Y •• is the overall mean of the data table. The additive model can be generalized to allow for arbitrary interaction effects by setting EY ij = μ + α i + β j + γ ij. However, after fitting the natural estimator of γ ij,
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
which under the null hypothesis follows an asymptotic χ 2-distribution with one degree of freedom. The square root of the single-restriction Wald statistic can be understood as a (pseudo) t-ratio that is, however, not actually t-distributed except for the special case of linear regression with normally distributed errors. [12]