Search results
Results From The WOW.Com Content Network
From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected (which however does not prove that the null hypothesis is false), or the null hypothesis cannot be rejected at that significance ...
Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution
A statistical significance test starts with a random sample from a population. If the sample data are consistent with the null hypothesis, then you do not reject the null hypothesis; if the sample data are inconsistent with the null hypothesis, then you reject the null hypothesis and conclude that the alternative hypothesis is true. [3]
In C, variables with static storage duration that are not initialized explicitly are initialized to zero (or null, for pointers). [3] Not only are uninitialized variables a frequent cause of bugs, but this kind of bug is particularly serious because it may not be reproducible: for instance, a variable may remain uninitialized only in some ...
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...
In science, a null result is a result without the expected content: that is, the proposed result is absent. [1] It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis .
It makes use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from these. The null hypothesis is that there is no serial correlation of any order up to p. [3] Because the test is based on the idea of Lagrange multiplier testing, it is sometimes referred to as an LM test for serial ...
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.