Search results
Results From The WOW.Com Content Network
In the early 1970s, computer technology enabled on-site data processing, some real-time analysis, and even graphical displays of metabolic variables, such as O 2, CO 2, and air-flow, thereby encouraging academic institutions to test accuracy and precision in new ways.
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...
It has a different definition of met that is the ratio of the metabolic rate of the activity in question to a resting metabolic rate. [27] As the formulation of the concept is different from the one that ASHRAE uses, these met values cannot be used directly in PMV calculations, but it opens up a new way of quantifying physical activities.
The body maintains a stable level of oxygen saturation for the most part by chemical processes of aerobic metabolism associated with breathing.Using the respiratory system, red blood cells, specifically the hemoglobin, gather oxygen in the lungs and distribute it to the rest of the body.
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
The standard definition of a reference range for a particular measurement is defined as the interval between which 95% of values of a reference population fall into, in such a way that 2.5% of the time a value will be less than the lower limit of this interval, and 2.5% of the time it will be larger than the upper limit of this interval, whatever the distribution of these values.