When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  3. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form. A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral. This gives the following formulas (where a ≠ 0), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced ...

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Any inverse-square law can instead be written in a Gauss's law-type form (with a differential and integral form, as described above). Two examples are Gauss's law (in electrostatics), which follows from the inverse-square Coulomb's law, and Gauss's law for gravity, which follows from the inverse-square Newton's law of universal gravitation. The ...

  6. Common integrals in quantum field theory - Wikipedia

    en.wikipedia.org/wiki/Common_integrals_in...

    A common integral is a path integral of the form ⁡ ((, ˙)) where (, ˙) is the classical action and the integral is over all possible paths that a particle may take. In the limit of small ℏ {\displaystyle \hbar } the integral can be evaluated in the stationary phase approximation .

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  8. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    More generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number >, leading to integrals of the form: + (). In this case, the weights are given [2] in terms of the generalized Laguerre polynomials:

  9. Gauss composition law - Wikipedia

    en.wikipedia.org/wiki/Gauss_composition_law

    In mathematics, in number theory, Gauss composition law is a rule, invented by Carl Friedrich Gauss, for performing a binary operation on integral binary quadratic forms (IBQFs). Gauss presented this rule in his Disquisitiones Arithmeticae , [ 1 ] a textbook on number theory published in 1801, in Articles 234 - 244.