Ads
related to: statistical risk function example pdf document free downloadpdf-format.com has been visited by 100K+ users in the past month
corporatetrainingmaterials.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
In a finite decision problem, the risk point of an admissible decision rule has either lower x-coordinates or y-coordinates than all other risk points or, more formally, it is the set of rules with risk points of the form (,) such that {(,):,} = (,). Thus the left side of the lower boundary of the risk set is the set of admissible decision rules.
Statistical parsing; Statistical population; Statistical power; Statistical probability; Statistical process control; Statistical proof; Statistical randomness; Statistical range – see range (statistics) Statistical regularity; Statistical relational learning; Statistical sample; Statistical semantics; Statistical shape analysis; Statistical ...
Sawilowsky [56] distinguishes between a simulation, a Monte Carlo method, and a Monte Carlo simulation: a simulation is a fictitious representation of reality, a Monte Carlo method is a technique that can be used to solve a mathematical or statistical problem, and a Monte Carlo simulation uses repeated sampling to obtain the statistical ...
The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
In financial mathematics and economics, a distortion risk measure is a type of risk measure which is related to the cumulative distribution function of the return of a financial portfolio. Mathematical definition
A standard application of SURE is to choose a parametric form for an estimator, and then optimize the values of the parameters to minimize the risk estimate. This technique has been applied in several settings. For example, a variant of the James–Stein estimator can be derived by finding the optimal shrinkage estimator. [2]